Can time-related patterns in diagnosis for hospital admission help identify common root causes for disease expression?

Rodney P Jones, Ph.D. Healthcare Analysis & Forecasting Camberley, Surrey

hcaf_rod@yahoo.co.uk

For additional articles in this series please go to: http://www.hcaf.biz

For the published version please go to: http://www.sciencedirect.com/science/article/pii/S0306987710000745

Abstract

For many years medical admissions to acute hospitals have been increasing at a rate far higher than expected from demographic change. Analysis shows that the admissions tend to increase in a step-like manner at an interval of 3–6 years. This study characterises the specific diagnoses associated with the step-changes and uses the resulting pattern in admissions over time to identify further diagnoses with a far lower incidence which may also conform to this pattern. All of the diagnoses located using this method have a common immune function linkage in the expression of the chronic form of the condition. It is proposed that the wider use of data mining techniques may enable association between diagnoses associated with the need for inpatient care arising from unexpected common causes.

Introduction

Up to the present most healthcare planning has assumed that demography is the primary factor responsible for growth. Rightly or wrongly, large hospitals are built based on this fundamental assumption [1]. The author is not aware of any publication which has actually proved the validity of this approach; however, by default a precedent has been established. It would seem that all concerned have simply assumed that this is the case. It is the author's experience that attempts to suggest to healthcare managers that demography may give unreliable estimates of future demand are met with great scepticism. Such an ideological framework may therefore act to limit the exploration of alternative concepts.

Anyone who has attempted to follow trends in inpatient care over a long time period will be acutely aware that many diagnoses do follow unique trends which are unrelated to any underlying demographic change. These 'unexplained' trends have largely been ignored as data artefacts due to poor coding processes within hospitals or simple random variation. In other words, the expectation of gradual and roughly linear demographic growth leads to the pre-conceived idea of what is considered a 'normal' trend.

Recent research is however beginning to question the validity of this approach. A study in Scotland looking at trends in emergency admission for older people concluded that demographic growth may only explain as little as 10% of the actual long-term increase [2]. Other studies have noted that in some specialties the long-term trends appear to follow cycles while growth in medical admissions appears to involve step-changes [3-7]. Admissions involving 'injury' have been shown to exhibit a unique growth pattern [8].

A recent study comparing trends in emergency admission for a wide range of diagnoses against an assumed linear growth model showed that over 58% of total activity was subject to a high degree of 'special cause' variation and that only 18% could be said to approximate straight line growth in the absence of 'special cause' variation [9]. Special cause variation will include all weather and environmental factors (such as viruses and other infectious agents) influencing the development and expression of poor health and all other sources of non-linear growth [3,10].

The linkage between human health and the environment is widely appreciated. Long term cycles in human longevity, gender ratio at birth and susceptibility to disease have been demonstrated to be linked with the approximate nine year cycle in solar flare intensity [11-16]. Temperature is a fundamental regulator of human health and hence global warming will both increase and decrease the incidence of various diseases and conditions [17]. Global warming itself follows a complex series of short, medium and long term cycles [18] and hence hospital admissions for particular conditions should exhibit the same behaviour. Most infectious diseases show a periodic nature with the time between successive outbreaks being specific to each disease [19-23]. Even common conditions such as appendicitis have shown long term trends which are unrelated to demography and may involve links to factors causing inflammation such as air pollution and viral infection [24-26].

Indeed government policy initiatives can also deliberately or inadvertently lead to trends in admission which are unrelated to demography. The shift in care for a range of mental health conditions from an inpatient to community focussed model is one example of a deliberate change [27-28]. In England, the imposition of targets for an 85% day case rate and a four hour maximum wait for an emergency department visit led to a unique set of inadvertent trends which were more to do with poor adherence to data standards than real growth [29-32]. For both targets the trends uniquely affect 'admissions' where the admission and discharge is on the same day, i.e. zero day stay. Once recognised such factors can be adjusted for in subsequent analysis of trends.

The potential role for viral infection as a basis for both primary and secondary expression of disease is becoming increasingly important. Hence in the case of appendicitis the periodic behaviour over time led to an unsuccessful attempt to correlate with a number of common viral infections [26]. The difficulty lies in knowing where to look among greater than 1,400 possible viral and non-viral candidates [33] and an unknown number of as yet unidentified viral agents [34] all within the context that the potential to cause chronic disease for many viruses still remains largely unstudied [35] or that opportunistic infection can occur subsequent to the initial infection [36].

An alternative approach could be to look for diagnoses showing a similar pattern of admissions over time. These can then be clustered together and common mechanisms explored. In this respect a curious three to six year pattern of step-changes in medical admission has been observed to occur in the UK and possibly elsewhere. The most recent of these step changes occurred around September of 2002 and again in 2007 [3-5]. A previously unrecognised infectious outbreak has been postulated with a mode of action against general immune function [37-38]. A linkage has been suggested with a shift in the Immune Risk Profile (IRP) - poor T cell proliferation and response to mitogens, low numbers of B cells, an inverted CD4:8 ratio caused by the proliferation of CD8 cells and CMV seropositivity - which is involved in the wider decline in health toward the end of life [39-41]. This may have parallels with the higher rate of biological ageing leading to increased susceptibility to infection and inflammation which occurs with AIDS [42].

The aim of this study is to investigate common associations between diseases and conditions which are serious enough to lead to inpatient care. This study presents preliminary evidence for unique time-based changes in diagnosis associated with the step-change in medical

admission and demonstrates that the method may have wider application in understanding the potential common linkages behind the unique time trends shown by other diagnoses.

Methodology Results Discussion Further Studies Conclusions

This study has both refined and broadened the list of diagnoses associated with the three to six year pattern in medical emergency admission seen in the UK. A pattern with a clear step may be associated with diagnoses with a primary linkage to immune function while a related but less defined step-increase may involve conditions where immune function is one among other mechanisms for ultimate expression of the need for inpatient care.

Wider scanning of the entire range of diagnoses describing inpatient care may then detect common patterns between other conditions such as the particular types of appendicitis and so enable linkages that may not otherwise be readily apparent.

The wider linkage of the chronic expression of disease can then be used to inform healthcare policy and the potential search for infectious agents where immunisation will then prevent the expression of knock-on chronic disease.

References

- [1] Jones R. New approaches to bed utilisation making queuing theory practical. Healthcare Analysis & Forecasting, Camberley, UK. 2002. <u>http://www.docstoc.com/docs/11432658/New-Approaches-to-Bed-Utilisation</u>
- [2] Kendrick S, Conway M. Increasing emergency admissions among older people in Scotland: A whole system account. Information & Statistics Division NHS Scotland, 2003. <u>http://www.isdscotland.org/isd/servlet/FileBuffer?namedFile=Whole_System+_WP1_text.pdf&p</u> <u>ContentDispositionType=inline</u>
- [3] Jones R. Trends in emergency admissions. British Jnl Healthcare Management 2009; 15: 188-196.
- [4] Jones R. Cycles in emergency admissions. British Jnl Healthcare Management 2009; 15: 239-46.
- [5] Jones R. Emergency admissions and hospital beds. Br Jnl Healthcare Management 2009; **15**, 289-96.
- [6] Jones R. Emergency admissions in the United Kingdom: Trend upward or fundamental shift? Healthcare Analysis & Forecasting, Camberley, UK. 1996;
- http://www.docstoc.com/docs/9258083/Increase-in-emergency-admissions---trend-or-step-change [7] Jones R. Cycles in emergency admissions – supplement. Healthcare Analysis & Forecasting,
- Camberley, UK. 2009; http://www.docstoc.com/docs/5705782/Cycles-in-emergency-admissions-Supplement
- [8] Jones R. Crafting efficient bed pools. Br Jnl Healthcare Management 2009; 15, 614-616.
- [9] Jones R. Emergency admissions and financial risk. Br Jnl Healthcare Management 2009; 15, 344-350.
- [10] Baldi M, Salinger J, Dirks K and McGregor G. Winter hospital admissions and weather types in the Auckland region. 2009 Australian Government Bureau of Metrology. http://www.bom.gov.au/events/9ichsmo/manuscripts/M1415 Baldi.pdf
- [11] Davis G, Lowell W. Chaotic solar cycles modulate the incidence and severity of mental illness. Medical Hypotheses 2004; **62**, 207-214.
- [12] Davis G, Lowell W. The sun determines human longevity: Teratogenic effects of solar radiation. Medical Hypotheses 2004; **63**, 574-581.
- [13] Davis G, Lowell W. Solar cycles and their relationship to human disease and adaptability. Medical Hypotheses 2006; **67**(3), 447-461.
- [14] Davis G, Lowell W. The light of life: Evidence that the sun modulates human lifespan. Medical Hypotheses 2008; **70**, 501-507.

- [15] Davis G, Lowell W. Peaks of solar cycles affect the gender ratio. Medical Hypotheses 2008; 71, 829-838.
- [16] Davis G, Lowell W. Photons and evolution: Quantum mechanical processes modulate sexual differentiation. Medical Hypotheses 2009; **73**, 296-301.
- [17] Hess J, Heilpern K, Davis T, Frumkin H. Climate change and emergency medicine: impacts and opportunities. Acad Emerg Med 2009, 16, 782-794.
- [18] Dilley D. Global warming Global cooling, natural cause found. Global Weather Oscillations, Inc. 2008. <u>http://www.globalweathercycles.com/GWGCNCF/index1.htm</u>
- [19] Dowell S. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis 2001; 7: 369-74. <u>http://www.cdc.gov/ncidod/eid/vol7no3/dowell.htm</u>
- [20] Koelle K, Pascual M. Disentangling extrinsic from intrinsic factors in disease dynamics: A nonlinear time series approach with an application for cholera. Am Nat 2004; **163**: 901-13.
- [21] Grassly N, Fraser C, Garnett G. Host immunity and synchronised epidemics of syphilis across the United States. Nature 2005; **433**: 417-21.
- [22] Grassly N, Fraser C. Seasonal infectious disease epidemiology. Proc Biol Sci 2006; 273: 2541-50.
- [23] Anderson R, Grenfell B, May. Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis. Journal of Hygiene 1984; **93**: 587-608.
- [24] Livingston E, Woodward W, Sarosi G, Haley R. Disconnect between incidence of nonperforated and perforated appendicitis. Ann Surg 2007; 245(6), 886-892.
- [25] Kaplan G, Dixon E, Panaccione A, Fong L, et al. Effect of ambient air pollution on the incidence of appendicitis. Canadian Medical Association Journal 2009; 181: 591-597.
- [26] Alder A, Fomby T, Woodward W, Haley R, et al. Association of viral infection and appendicitis. Archives of Surgery 2010; 145: 63-71
- [27] Davis G, Lowell W. Using artificial neural networks and the Gutenberg-Richter power law to 'rightsize' a behavioural health care system. American Journal of Medical Quality 1999; 14(5), 216-228.
- [28] Davis G, Lowell W. Determining the number of state psychiatric hospital beds by measuring quality of care with artificial neural networks. American Journal of Medical Quality 1998; 13(1), 13-24.
- [29] Jones R. Benchmarking zero day stay 'emergency' admissions in Thames Valley. Healthcare Analysis & Forecasting, Camberley, UK; 2006. <u>http://www.docstoc.com/docs/5049800/Benchmark-zero-day-stay-emergency-admissions</u>
- [30] Jones R. Benchmarking zero day stay 'elective' admissions in Thames Valley. Healthcare Analysis & Forecasting, Camberley, UK; 2006.
- [31] Jones R. Equilibrium. Healthcare Analysis & Forecasting, Camberley, UK. 2007. http://www.hcaf.biz/Recent/Microsoft%20Word%20-%20Counting_and_coding.pdf
- [32] Audit Commission. Short stay admissions: Questions a PCT should ask. September 2008. http://www.audit
 - commission.gov.uk/nationalstudies/health/databriefings/pages/shortstayemergency.aspx
- [33] Woolhouse M, Gowtage-Sequeria S. Host range and emerging and re-emerging pathogens. Emerging Infectious Diseases 2005; **11(12).** www.cdc.gov/ncidod/EID/vol11no12/05-0997.htm
- [34] Allander T, Tammi M, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 2005; 102(36): 12891–12896
- [35] Voisset C, Weiss R, Griffiths D. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; **72**(1): 157–196
- [36] Zuniga E, Liou L, Mack L, Mendoza M, Oldstone M. Persistent virus infection inhibits type I interferon production by plasmacytoid dendritic cells to facilitate opportunistic infections. Cell Host Microbe 2008; 4(4): 374–86
- [37] Jones R. Unexpected, periodic and permanent increase in medical inpatient care: Man-made or new disease? Medical Hypotheses 2010; doi: 10.1016/j.mehy.2010.01.011
- [38] Jones R. Additional studies on the three to six year pattern in medical emergency admissions. Healthcare Analysis & Forecasting, Camberley, UK. December 2009. http://www.hcaf.biz/Recent/Additional Studies.pdf

- [39] Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A. Human immunoscenescence: is it infectious? Immunological Reviews 2005; 205(1): 257-268.
- [40] Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomelagavirus and human immunoscenescence. Reviews in Medical Virology 2009; **19**: 47-56.
- [41] Derhovanessian E, Larbi A, Pawalec G. Biomarkers of human immunoscenescence: impact of Cytomegalovirus infection. Current Opinion in Immunology 2009; 21: 1-6.
- [42] Deeks S, Phillips N. HIV infection, antiretroviral treatment, ageing, and nom-AIDS related morbidity. BMJ 2010; 338: 288-292.
- [43] Gray D. Editor's preface. Annual and seasonal variation in the incidence of common diseases. The Royal College of General Practitioners, Occasional paper 53, October 1991.
- [44] Wheatland R. Viral carrier status is instilled by viral regulatory particles. Medical Hypoytheses 2010; in press
- [45] Berrington W, Hawn T. Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter? Immunol Rev 2007; **219**: 167-186 (Abstr).
- [46] Vojdani A and Thrasher J. Cellular and humoral immune abnormalities in gulf war veterans. Environmental Health Perspectives. 2004; **112**(8), 840-846.
- [47] Hyams K, Wignall F and Roswell R. war syndromes and their evaluation: from the US Civil War to the Persian Gulf War. Annals of Internal Medicine. 1996; **125**(5), 398-405.
- [48] Goulding C, O'Connell P and Murray F. Prevalence of fibromyalgia, anxiety and depression in chronic hepatitis C virus infection: relationship to RT-PCR status and mode of acquisition. European Journal of Gastroenterology and Hepatology. 2001; **13**(5), 507-511.
- [49] Kiecolt-Glaser J and Glaser R. Depression and immune function central pathways to morbidity and mortality. Journal of Psychosomatic Research. 2002; **53**, 873-876.
- [50] Ironson G, Wynings C, Schneiderman N, Baum A, et al. Posttraumatic stress symptoms, intrusive thoughts, loss and immune function after Hurricane Andrew. Psychosomatic Medicine. 1997; 59(2), 128-141.
- [51] Kiecolt-Glaser J, Glaser R, Shuttleworth E, Dyer C, Ogrocki P and Speichler C. Chronic stress and immunity in family caregivers of Alzheimer's disease victims. Psychosomatic Medicine. 1987; 49(5), 523-535.
- [52] Evans D, Ten Have T, Douglas S, Gettes D, Morrison M, et al. Association of depression with viral load, CD8 T lymphocytes, and natural killer cells in women with HIV infection. American Journal of Psychiatry. 2002; 159, 1752-1759.
- [53] Fairweather D and Rose N. Women and autoimmune diseases. Emerging Infectious Diseases. 2004; 10(11) www.cdc.gov/ncidod/EID/vol10no11/04-0367.htm
- [54] Picker L and Watkins D. HIV pathogenesis: the first cut is the deepest. Nature Immunology. 2005; 6(5), 430-432.
- [55] Hyams K. Developing case definitions for symptom-based conditions: the problem of specificity. Epidemiologic Reviews. 1998; **20**(2), 148-156.
- [56] Kitcharoen S, Patlapongsin M, Sawanyawisuth K, Angela V, Tiamkao S. Neurologic manifestations of pandemic (H1N1) 2009 virus infection. Emerg Infect Dis 2010; Mar, DOI: 10.3201/eid1603.091699
- [57] Chiu S, Tse C, Lau Y, Peiris M. Influenza A infection is an important cause of febrile seizures. Pediatrics 2001; **108(4)**, e63. http://pediatrics.aappublications.org/cgi/content/full/108/4/e63
- [58] Aloisi F. Immune function of microglia. Glia 2001; 36: 165-179.
- [59] Fleming D, Norbury C, Crombie D. Annual and seasonal variation in the incidence of common diseases. The Royal College of General Practitioners, Occasional paper 53, October 1991.
- [60] Burkom H, Elbert Y, Feldman A, Lin J. Role of data aggregation in biosurveilance detection strategies with applications from ESSENCE. CDC MMWR, Sep 24, 2004, 53(Supplement), 67-73. www.cdc.gov.mmwr/PDF/wk/mm53SU01.pdf
- [61] Glezen W. Serious morbidity and mortality associated with influenza epidemics. Epidemiologic Reviews 1982; **4**: 26-44.

6

Table 1: Diagnoses where a clear step change has occurred.

ICD				03/04	08/09
Code	Description	2003/04	2008/09	step	step
C48	Malignant neoplasm of retroperitoneum and peritoneum	1157	1526	24%	15%
D22	Melanocytic naevi	1464	1462	15%	22%
G43	Migraine	6954	11282	7%	16%
G45	Transient cerebral ischaemic attacks and related syndrome	16633	21185	6%	13%
G97	Postprocedural disorders of nervous system	445	797	21%	29%
H47	Other disorders of optic [2nd] nerve and visual pathway	448	581	23%	18%
H66	Suppurative and unspecified otitis media	6957	6627	7%	7%
134	Nonrheumatic mitral valve disorders	2553	2908	10%	6%
142	Cardiomyopathy	3445	3988	8%	8%
151	Complications and ill-defined descriptions of heart disease	1547	2331	14%	40%
163	Cerebral infarction	35770	44354	2%	6%
J06	Acute upper respiratory infections of multiple sites	45411	50348	13%	12%
J10	Influenza due to identified influenza virus	322	314	201%	140%
J11	Influenza virus not identified	950	673	42%	28%
J18	Pneumonia organism unspecified	88038	125601	9%	15%
J22	Unspecified acute lower respiratory infection	77965	91245	8%	13%
J40	Bronchitis not specified as acute or chronic	1265	1671	14%	11%
J44	Other chronic obstructive pulmonary disease	103917	109977	13%	10%
J45	Asthma	55875	61048	10%	11%
J84	Other interstitial pulmonary diseases	4960	5854	11%	6%
J86	Pyothorax	1910	2573	11%	11%
K59	Other functional intestinal disorders	34006	40602	6%	6%
M54	Dorsalgia	33679	48031	10%	8%
M62	Other disorders of muscle	2172	2520	10%	16%
N39	Other disorders of urinary system	82586	130444	10%	9%
O91	Infections of breast associated with childbirth	509	835	22%	16%
P08	Disorders related to long gestation and high birth weight	5332	8827	6%	10%
P28	Other respiratory conditions from the perinatal period	6612	8845	8%	9%
P36	Bacterial sepsis of newborn	1010	2310	15%	31%
R00	Abnormalities of heart beat	15496	21927	13%	8%
R06	Abnormalities of breathing	53006	76785	8%	14%
R07	Pain in throat and chest	181967	252091	9%	6%
R33	Retention of urine	25113	27183	3%	4%
R42	Dizziness and giddiness	12787	19252	12%	11%
R50	Fever of unknown origin	15134	22455	13%	5%
R53	Malaise and fatigue	10415	14632	11%	13%
R55	Syncope and collapse	64032	91643	10%	9%
R56	Convulsions not elsewhere classified	35375	41528	9%	5%
R68	Other general symptoms and signs	3023	5559	13%	65%
R69	Unknown and unspecified causes of morbidity	229695	116827	19%	10%
T42	Poisoning by antiepileptic, etc drugs	12608	15435	11%	5%
Z04	Examination and observation for other reasons	10334	15273	41%	57%
	Total	1292877	1509349	11%	10%

ICD				03/04	08/09
Code	Description	2003/04	2008/09	step	step
B34	Viral infection of unspecified site	39,911	48,619	4%	12%
E11	Non-insulin-dependent diabetes mellitus	13,669	17,615	7%	8%
E16	Other disorders of pancreatic internal secretion	7,596	12,900	6%	12%
E66	Obesity	1,212	5,287	29%	47%
E87	Other disorders of fluid, electrolyte and acid-base balance	8,521	15,614	19%	15%
F10	Mental and behavioural disorders due to use of alcohol	31,565	42,995	10%	3%
G44	Other headache syndromes	2,260	3,178	9%	10%
G51	Facial nerve disorders	2,478	3,993	7%	13%
H35	Other retinal disorders	3,064	4,113	12%	11%
H53	Visual disturbances	2,641	4,275	11%	16%
I48	Atrial fibrillation and flutter	55,910	68,088	6%	2%
195	Hypotension	8,387	13,635	13%	10%
J00	Acute nasopharyngitis [common cold]	773	1,628	13%	29%
J47	Bronchiectasis	5,203	6,430	11%	7%
J98	Other respiratory disorders	4,621	5,500	6%	11%
K04	Diseases of pulp and periapical tissues	3,974	5,278	8%	5%
K57	Diverticular disease of intestine	20,702	22,161	3%	3%
K85	Acute pancreatitis	13,879	17,160	6%	5%
K92	Other diseases of digestive system	35,839	42,534	3%	6%
L02	Cutaneous abscess, furuncle and carbuncle	23,199	28,571	9%	6%
L03	Cellulitis	48,889	56,232	10%	4%
M15	Polyarthrosis	2,772	7,215	19%	36%
M25	Other joint disordersnot elsewhere classified	30,681	50,866	6%	21%
M79	Other soft tissue disorders not elsewhere classified	46,936	66,176	4%	10%
N12	Tubulo-interstitial nephritis	6,405	10,045	11%	14%
N20	Calculus of kidney and ureter	21,890	30,502	11%	8%
O90	Complications of the puerperium	3,961	6,323	16%	5%
P20	Intrauterine hypoxia	23,144	25,084	6%	3%
P92	Feeding problems of newborn	7,387	12,478	7%	10%
R10	Abdominal and pelvic pain	181,762	227,143	6%	3%
R18	Ascites	4,854	8,403	13%	9%
R20	Disturbances of skin sensation	3,621	6,603	10%	17%
R25	Abnormal involuntary movements	2,873	4,125	8%	8%
R26	Abnormalities of gait and mobility	7,198	6,954	5%	10%
R31	Unspecified haematuria	15,736	20,379	6%	6%
R41	Symptoms and signs of cognitive function & awareness	18,341	27,112	12%	13%
R47	Speech disturbances, not elsewhere classified	2,357	5,191	11%	24%
R51	Headache	32,540	50,753	9%	9%
R54	Senility	27,665	42,175	8%	16%
R79	Other abnormal findings of blood chemistry	1,710	5,460	25%	15%
T40	Poisoning by narcotics and hallucinogens	6,545	9,954	12%	4%
T83	Complications of genitourinary prosthetic devices & grafts	6,825	11,279	5%	13%
Z27	Immunization against combinations of infectious diseases	646	333	24%	24%
<u>Z45</u>	Adjustment and management of implanted device	6,765	8,467	<u>5%</u>	9%
	Total	796,907	1,068,826	7%	8%

 Table 2: Diagnoses where the step change may be mixed with other factors.

Footnote: Diagnoses such as R79, M15, R47, J00, etc showing high apparent growth between 2003/04 and 2008/09 may have additional confounding effects due to increases in zero day stay 'admissions'.

ICD	Description	2002/03	2003/04	2007/08	2008/09
A01	Typhoid and paratyphoid fevers	169	247	351	367
A03	Shigellosis	61	68	76	87
A07	Other protozoal intestinal diseases	165	239	160	212
A20	Plague	2	2	0	3
A25	Rat-bite fevers	3	6	1	2
A30	Leprosy [Hansen's disease]	12	21	3	4
A32	Listeriosis	33	63	64	58
A35	Other tetanus	15	22	21	21
A38	Scarlet fever	250	259	294	421
A39	Meningococcal infection	2075	2033	1593	1607
A40	Streptococcal septicaemia	979	1060	1110	1213
A43	Nocardiosis	2	9	1	8
A46	Erysipelas	310	354	265	281
A50	Congenital syphilis	7	10	8	15
A52	Late syphilis	72	93	92	99
A53	Other and unspecified syphilis	20	29	22	26
A68	Relapsing fevers	2	6	5	8
B95	Streptococcus and staphylococcus	62	68	11	26
B96	Other bacterial agents	54	51	27	39
B97	Viral agents	85	45	13	46
B09	Viral infection with skin & mucous membrane lesions	373	415	571	679
B05	Measles	77	108	353	409
B56	African trypanosomiasis	1	9	9	12
B57	Chagas' disease	0	20	0	0
B37	Candidiasis	1345	1489	1697	1745
B33	Other viral diseases, NEC	114	182	98	117
B36	Other superficial mycoses	35	44	37	65
B87	Myiasis	4	6	11	15
B43	Chromomycosis and phaeomycotic abscess	1	3	4	10
B90	Sequelae of tuberculosis	2	5	0	1
B91	Sequelae of poliomyelitis	3	9	0	3
B76	Hookworm diseases	7	12	2	7
B19	Unspecified viral hepatitis	180	230	195	215
B20	HIV disease resulting in infectious parasitic diseases	961	1040	1471	1627
B26	Mumps	96	143	198	281
	Total	7577	8400	8763	9729

Table 3: Diagnoses related to infectious and parasitic diseases.

Footnote: The diagnosis B34 (viral infection of unspecified site) is listed in Table 2.

Fig. 1: Time-trends related to the clusters of diagnoses in tables 1 and 2.

Footnote: Apparent growth subsequent to 2003/04 in the 'Possible Step' group may be partly due to increases in zero day stay 'admissions' for particular diagnoses.

Fig. 2: Time-trend related to the cluster of diagnoses in table 3.