Re-thinking Bed Management

Dr Rod Jones (ACMA, CGMA) Statistical Advisor Healthcare Analysis & Forecasting

www.hcaf.bi∠

Re-thinking Bed Management

- * Understanding variation is very important
- * Why current bed planning is flawed
- * A new method for bed planning
 - * Bed numbers, occupancy & turn-away
 - Economies of scale
 - * High throughput has consequences
- * Elective vs emergency flows
- * Can you 'plan' medical bed occupancy?

Understanding Variation

* Special cause variation

- * Anything that causes the average to change
- * Weather, Viruses & other infections, arrival of new technology, daily-, weekly- or annual-cycles
- * Common cause variation
 - * Statistical variation around the average
 - * Largely described by Poisson statistics

Special Cause Variation

Minute of the day

Special cause variation – why the bed crisis?

www.hcaf.biz

Poisson variation

- * Poisson randomness describes arrival events
- Widely used in telecommunications, business and industry
- * Is the basis of queuing theory
- Is the forgotten but controlling factor behind <u>ALL</u> healthcare demand and resource allocation, i.e. beds, appointments, equipment, etc

Poisson randomness

- * Standard deviation equals square root of the average
- Maximum variation is three times the standard deviation
- * But is a skewed distribution
- * Skew increases as size decreases
 - * All NHS demand is in the region of high skew
 - * This creates the feeling of 'out of control'

Special & Common Combine

Standard deviation associated with healthcare demand

Elective demand – reality!

Total Elective Demand (ON + DC) in Surgical Specialties

www.hcaf.biz

Poisson randomness

- You are expecting 1 per day but must be able to cope with 6 or 7 actual arrivals
- * On 37% of days your
 resources stand idle as
 there are no arrivals
- * 1 per day ICU, CCU, etc

Poisson randomness

- At 5 per day need to be able to cope with 15 yet on 1% of occasions no arrivals
- All outpatient referrals to consultants less than 10 per work day
- <u>Guaranteed</u> 2 week
 cancer wait impossible
 unless you flex resources!

Implications

- * Size for financial stability larger than any PCT
- * HRG's 95% have fewer than 1,000 p.a. thus unable to forecast prices (see next slide)
- * Average is no longer easy to calculate
 - * Contracting becomes difficult
 - * HRG based income leads to high financial risk
- * Size of A&E, bed pools, outpatient clinics, etc
- Not able to guarantee performance targets except with excess resources
- * Booked admissions initiative needs statistical support

Is the price 'accurate'?

Price for each Emergency HRG at a large hospital

Turned-away or join the queue

- * When arrivals exceed resources you either go elsewhere or join a queue
- Hence trolley waits, cancelled operations, borrowed beds, hidden queues
- Best illustrated by plotting % occupancy vs bed pool size

Benchmarks - size

ICU beds (Neonatal, Paediatric & Adult)

Benchmarks – why?

Region	Average Number of Acute Beds per	Average weighted Occupancy	Average weighted		
	NHS Trust		Turn-away		
Trent	425	80%	0.8%		
Northern	440	80%	1.4%		
South & West	390	82%	2.0%		
North Thames	330	85%	4.4%		
Anglia & Oxford	260	87%	4.7%		
West Midlands	350	87%	4.9%		
North Western	380	85%	5.3%		
South Thames	370	88%	6.5%		

What can this method do?

- * Accurate size for any bed pool
 - * Links bed days to beds via correct occupancy
- * What-if calculations
 - * How big will the pool be if we remove 'x' bed days
 - * How many beds would we save by merging two bed pools, e.g. two sites to one
 - * Can we close beds over the summer

Medical bed planning

Daily medical bed demand

420 370 Elective + Emergency Occupied beds 320 270 **Emergency only** 220 170 Apr-94 -Jan-95 -Apr-95 -Jul-95 . Oct-95 . Jan-96 . Apr-96 Jul-96 Oct-96 Apr-99 Jul-99 Oct-99 Apr-00 -- 00-lul Oct-00 Oct-94 Jan-98 Apr-98 Oct-98 Jan-99 Jan-00 Jul-01 Oct-01 Jul-94 Jan-97 Apr-97 Oct-97 Jul-98 Jan-01 Apr-01 70-IUL

www.hcaf.biz

Medical bed planning

Delay Free Medical Bed Demand

Is 75% day case achievable?

		LO	S (days)	
Specialty		0	1	2
General Surgery	ON	7%	25%	25%
	EM	8%	20%	16%
Urology	ON	4%	15%	26%
	EM	16%	18%	13%
T&O	ON	8%	24%	17%
	EM	9%	22%	12%

www.hcaf.biz

Hidden Gain

- * 0 LOS patients increase daytime occupancy leading to that part of A&E trolley waiting due to unavailable beds
- * 1 day LOS can potentially be treated as day case the hidden consequence of insufficient day case resources
- * 2 day LOS are potential day case candidates if intensive input is available
- * Short stay emergency imply need for streaming of patients
- * The above <u>do not</u> save overnight beds but reduce daytime occupancy to the point that the 'system' (including A&E) starts to work again

HRG Pools

- Within the larger pool create sub-pools with a specialist interest
 - * These specialist pools deliver reductions in LOS
- Around the specialist pool place pools with mixed interest
 - * Patients are no longer scattered but are clustered
- Does imply the need for adequate bed days in the total system

Hot & Cold Sites?

- * Forfeits economy of scale
- * Elective demand is just as variable as emergency demand (as per earlier figure)
- * Implies adequate bed provision on both sites
- * Ignores realities of medical bed demand
- * Same effect if an elective factory (IS TC) opens nearby

Conclusions

- * Understanding randomness is important
- * A little bit of queuing theory goes a long way to explaining a lot of things
- Some things are mathematically impossible unfortunately they are part of your performance targets!
- * If planning was that easy we would all have been doing it years ago

Contact Details

Dr Rod Jones Statistical Advisor Healthcare Analysis & Forecasting rodjones@hcaf.fsnet.co.uk 07890 640399 (mobile)